Package: SeqExpMatch (via r-universe)

August 28, 2024

Type Package
Title Sequential Experimental Design via Matching on-the-Fly
Version 1.0.0

Description Generates the following sequential two-arm experimental
designs: (1) completely randomized (Bernoulli) (2) balanced
completely randomized (3) Efron's (1971) Biased Coin (4)
Atkinson's (1982) Covariate-Adjusted Biased Coin (5) Kapelner
and Krieger's (2014) Covariate-Adjusted Matching on the Fly (6)
Kapelner and Krieger's (2021) CARA Matching on the Fly with
Differential Covariate Weights (Naive) (7) Kapelner and
Krieger's (2021) CARA Matching on the Fly with Differential
Covariate Weights (Stepwise) and also provides the following
types of inference: (1) estimation (with both Z-style
estimators and OLS estimators), (2) frequentist testing (via
asymptotic distribution results and via employing the
nonparametric randomization test) and (3) frequentist
confidence intervals (only under the superpopulation sampling
assumption currently). Details can be found in our publication:
Kapelner and Krieger * * A Matching Procedure for Sequential
Experiments that Iteratively Learns which Covariates Improve
Power" (2020) <arXiv:2010.05980>. We now offer support for
incidence, count, proportion and survival (with censoring)
outcome types. We also have support for adding responses
whenever they become available, and we can impute missing data
in the subjects' covariate records (where each covariate record
can thereby have different information). On the inference side,
there is built-in support for many types of parametric models
such as random effects for incidence outcomes and count
outcomes. There is Kaplan-Meier estimation, weibull and coxph
models for survival outcomes.

License GPL-3
Encoding UTF-8

Depends R6, checkmate, Matrix, data.table, survival, controlTest,
betareg, statmod, numDeriv, Ime4, ImerTest, coxme, missRanger,
missForest, doParallel

https://arxiv.org/abs/2010.05980

2 SeqDesign

Imports stats, checkmate, doParallel, R6

URL https:
//github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr

RoxygenNote 7.3.2

Repository https://kapelner.r-universe.dev

RemoteUrl https://github.com/kapelner/matching_on_the_fly_designs_r_package_and_paper_repr

RemoteRef HEAD

RemoteSha 901173847b8e05e29¢78508e771067ae68376848

Contents
SegDesign 2
SeqDesignlnference 10
SeqExpMatch oL 18
Index 19
SeqgDesign A Sequential Design
Description

An R6 Class encapsulating the data and functionality for a sequential experimental design. This
class takes care of data intialization and sequential assignments. The class object should be saved
securely after each assignment e.g. on an encrypted cloud server.

Public fields

t The current number of subjects in this sequential experiment (begins at zero).

design The experimenter-specified type of sequential experimental design (see constructor’s doc-
umentation).

Xraw A data frame (data.table object) of subject data with number of rows n (the number of sub-
jects) and number of columns p (the number of characteristics measured for each subject).
This data frame is filled in sequentially by the experimenter and thus will have data present
for rows 1...t (i.e. the number of subjects in the experiment currently) but otherwise will be
missing.

Ximp Same as Xraw except with imputations for missing values (if necessary) and deletions of
linearly dependent columns

X Same as Ximp except turned into a model matrix (i.e. all numeric with factors dummified) with
no linearly dependent columns (and it is also a matrix object, not a data.table object)

y A numeric vector of subject responses with number of entries n (the number of subjects). During
the KK21 designs the experimenter fills these values in when they are measured. For non-
KK21 designs, this vector can be set at anytime (but must be set before inference is desired).

https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr
https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr

SeqDesign 3

dead A binary vector of whether the subject is dead with number of entries n (the number of sub-
jects). This vector is filled in only for response_type values "survival". The value of 1 indi-
cates uncensored (as the subject died) and a value O indicates the real survival value is censored
as the subject is still alive at the time of measurement. This follows the same convention as
the event argument in the canonical survival package in the constructor survival: :Surv.
During the KK21 designs the experimenter fills these values in when they are measured. For
non-KK21 designs, this vector can be set at anytime (but must be set before inference is de-
sired).

prob_T The experimenter-specified probability a subject becomes wtated to the treatment arm.

w A binary vector of subject assignments with number of entries n (the number of subjects). This
vector is filled in sequentially by this package (similar to X) and will have assignments present
for entries 1...t (i.e. the number of subjects in the experiment currently) but otherwise will be
missing.

response_type This is the experimenter-specified type of response value which is one of the fol-

lowing: "continuous", "incidence", "proportion”, "count", "survival"

covariate_weights The running values of the weights for each covariate

Methods

Public methods:

¢ SeqDesign$new()

* SegDesign$add_subject_to_experiment_and_assign()
* SegDesign$print_current_subject_assignment()

* SegDesign$add_subject_response()

* SegDesign$add_all_subject_responses()

* SegDesign$matching_statistics()

* SegDesign$assert_experiment_completed()

* SeqDesign$check_experiment_completed()

* SeqDesign$clone()

Method new(): Initialize a sequential experimental design

Usage:
SeqDesign$new(
n,
design,
response_type,
prob_T = 0.5,

include_is_missing_as_a_new_feature = TRUE,
verbose = TRUE,

)

Arguments:

n Number of subjects fixed beforehand.

SeqDesign

design The type of sequential experimental design. This must be one of the following "CRD"
for the completely randomized design / Bernoulli design, "iBCRD" for the incomplete / bal-
anaced completely randomized design with appropriate permuted blocks based on prob_T
(e.g., if prob_T = 2, then this design would enforce n/2 T’s and n/2 C’s), "Efron" for Efron’s
(1971) Biased Coin Design "Atkinson" for Atkinson’s (1982) Covariate-Adjusted Biased
Coin Design "KK14" for Kapelner and Krieger’s (2014) Covariate-Adjusted Matching on
the Fly Design "KK21" for Kapelner and Krieger’s (2021) CARA Matching on the Fly with
Differential Covariate Weights Design "KK21stepwise" for Kapelner and Krieger’s (2021)
CARA Matching on the Fly with Differential Covariate Weights Stepwise Design

response_type The data type of response values which must be one of the following: "con-
tinuous", "incidence", "proportion", "count", "survival". This package will enforce that all

added responses via add_subject_response will be of the appropriate type.

prob_T The probability of the treatment assignment. This defaults to 9. 5.

include_is_missing_as_a_new_feature If missing data is present in a variable, should we
include another dummy variable for its missingness in addition to imputing its value? If the
feature is type factor, instead of creating a new column, we allow missingness to be its own
level. The default is TRUE.

verbose A flag indicating whether messages should be displayed to the user. Default is TRUE.

. Design-specific parameters: "Efron" requires "weighted_coin_prob" which is the probabil-

ity of the weighted coin for assignment. If unspecified, default is 2/3. All "KK" designs
require "lambda", the quantile cutoff of the subject distance distribution for determining
matches. If unspecified, default is 10 All "KK" designs require "t_0_pct", the percentage of
total sample size n where matching begins. If unspecified, default is 35 All "KK" designs
have optional flag KK_verbose with default FALSE which prints out debug messages about
how the matching-on-the-fly is working. All "KK21" designs further require "num_boot"
which is the number of bootstrap samples taken to approximate the subject-distance distri-
bution. If unspecified, default is 500. There is an optional flag "proportion_use_speedup =
TRUE" which uses a continuous regression on log(y/(1-y)) instead of a beta regression each
time to generate the weights in KK21 designs. The default is this flag is on.

Returns: A new ‘SeqDesign‘ object.

Examples:

seg_des = SeqDesign$new(design = "KK21stepwise”, response_type = "continuous”)

Method add_subject_to_experiment_and_assign(): Add subject-specific measurements
for the next subject entrant and return this new subject’s treatment assignment

Usage:

SegDesign$add_subject_to_experiment_and_assign(x_new, allow_new_cols = TRUE)

Arguments:

x_new A row of the data frame corresponding to the new subject to be added (must be type
data.table).

allow_new_cols Should we allow new/different features than previously seen in previous sub-
jects in the new subject’s covariates? Default is TRUE.

KK_verbose If TRUE, we will print out messages about the KK assignment. This is useful for
understanding how the KK assignment is working

SeqDesign 5

Examples:

seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD", response_type = "continuous")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

Method print_current_subject_assignment(): Prints the current assignment to screen.
Should be called after add_subject_to_experiment_and_assign.

Usage:

SegDesign$print_current_subject_assignment()

Examples:
seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD", response_type = "continuous")

seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seg_des$print_current_subject_assignment()

Method add_subject_response(): For CARA designs, add subject response for the a subject

Usage:

SeqDesign$add_subject_response(t, y, dead = 1)

Arguments:

t The subject index for which to attach a response (beginning with 1, ending with n). You can-
not add responses for subjects that have not yet been added to the experiment via add_subject_to_experiment_and_ass

y The response value which must be appropriate for the response_type.

dead If the response is censored, enter O for this value. This is only necessary to specify for
response type "survival" otherwise do not specify this argument (as it will default to 1).

Examples:

seg_des = SeqDesign$new(n = 100, p = 10, design = "KK21", response_type = "continuous”)

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

seq_des$add_subject_response(4.71, 1)
#works
seg_des$add_subject_response(4.71, 2)
#fails

Method add_all_subject_responses(): For non-CARA designs, add all subject responses

Usage:
SeqDesign$add_all_subject_responses(ys, deads = NULL)

Arguments:

ys The responses as a numeric vector of length n

deads The binary vector of length n where 1 indicates the the subject is dead (survival value
is uncensored) and 0 indicates the subject is alive (survival value is censored). This is only
necessary for response type "survival" otherwise do not specify and the value will default
to 1.

SeqDesign

Examples:

seq_des = SeqDesign$new(n =6, p = 10, design = "CRD", response_type = "continuous"”)

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

Method matching_statistics(): For KK designs only, this returns a list with useful matching
statistics.

Usage:

SegDesign$matching_statistics()

Returns: Alist with the following data: num_matches, prop_subjects_matched, num_subjects_remaining_in_resel
prop_subjects_remaining_in_reservoir.

Examples:

seg_des = SegDesign$new(n = 6, p = 10, design = "KK14", response_type = "continuous")

seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
2
2

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsyl[5, :10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, :101)

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seg_des$matching_statistics()

Method assert_experiment_completed(): Asserts if the experiment is completed (all n as-
signments are assigned in the w vector and all n responses in the y vector are recorded), i.e. throws
descriptive error if the experiment is incomplete.

Usage:

SegDesign$assert_experiment_completed()

Examples:

seg_des = SeqDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

#if run, it would throw an error since all of the covariate vectors are not yet recorded
#seq_des$assert_experiment_completed()

SeqDesign 7

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 101)
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

#if run, it would throw an error since the responses are not yet recorded
#seq_des$assert_experiment_completed()

seg_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$assert_experiment_completed() #no response means the assert is true

Method check_experiment_completed(): Checks if the experiment is completed (all n as-
signments are assigned in the w vector and all n responses in the y vector are recorded).

Usage:
SeqgDesign$check_experiment_completed()

Returns: TRUE if experiment is complete, FALSE otherwise.

Examples:

seg_des = SeqDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

#returns FALSE since all of the covariate vectors are not yet recorded
seq_des$check_experiment_completed()

seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 101)
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

#returns FALSE since the responses are not yet recorded
seq_des$check_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$check_experiment_completed() #returns TRUE

Method clone(): The objects of this class are cloneable with this method.

Usage:
SegDesign$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

8 SeqDesign

Examples
e e e
Method ~SegDesign$new”
B o
seq_des = SegDesign$new(design = "KK21stepwise"”, response_type = "continuous")
oo
Method ~SeqDesign$add_subject_to_experiment_and_assign”
oo
seq_des = SegDesign$new(n = 100, p = 10, design = "CRD"”, response_type = "continuous")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 101)

B o

Method ~SeqgDesign$print_current_subject_assignment=

B oo

seq_des = SegDesign$new(n = 100, p = 10, design = "CRD"”, response_type = "continuous")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 101)
seq_des$print_current_subject_assignment()

H m o
Method ~SeqDesign$add_subject_response”
B m o

seq_des = SegDesign$new(n = 100, p = 10, design = "KK21", response_type = "continuous")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

seq_des$add_subject_response(4.71, 1)
#works
seq_des$add_subject_response(4.71, 2)
#fails

b m oo
Method ~SeqDesign$add_all_subject_responses”
B o

seq_des = SeqgDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous"”)

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
2

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, :101)

SeqDesign 9

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

#H - e

Method ~SegqDesign$matching_statistics™

#H# - e

seq_des = SegDesign$new(n = 6, p = 10, design = "KK14", response_type = "continuous")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$matching_statistics()

B e

Method ~SegDesign$assert_experiment_completed”

oo

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])

#if run, it would throw an error since all of the covariate vectors are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

#if run, it would throw an error since the responses are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$assert_experiment_completed() #no response means the assert is true

H m o

Method ~SeqgDesign$check_experiment_completed”

H m o

seq_des = SegDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous”)

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 101)

#returns FALSE since all of the covariate vectors are not yet recorded

10

seq_des$check_experiment_completed()

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2,
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3,
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4,
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5,
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6,

#returns FALSE since the responses are not yet recorded
seq_des$check_experiment_completed()

NN DN NN

: 101)
:101)
: 100)
: 100)
:101)

SeqDesignInference

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$check_experiment_completed() #returns TRUE

SegDesignInference Inference for A Sequential Design

Description

An R6 Class that estimates, tests and provides intervals for a treatment effect in a sequential de-
sign. This class takes a SeqDesign object as an input where this object contains data for a fully
completed sequential experiment (i.e. all treatment assignments were allocated and all responses
were collected). Then the user specifies the type of estimation (mean_difference-or-medians or de-
fault_regression) and the type of sampling assumption (i.e. the superpopulation assumption leading
to MLE-or-KM-based inference or the finite population assumption implying randomization-exact-
based inference) and then can query the estimate and pval for the test. If the test is normal-theory
based it is testing the population H_0: beta_T = 0 and if the test is a randomization test, it is test-
ing the sharp null that H_0: Y_T_i = Y_C_i for all subjects. Confidence interval construction is

available for normal-theory based test type as well.

Public fields

estimate_type The estimate type (see initializer documentation).

test_type The type of test to run (see initializer documentation).

Methods

Public methods:
¢ SeqDesignInference$new()
* SegDesignInference$compute_treatment_estimate()
* SegDesignInference$compute_confidence_interval()

* SegDesignInference$compute_two_sided_pval_for_treatment_effect()

e SeqDesignInference$clone()

Method new(): Initialize a sequential experimental design estimation and test object after the

sequential design is completed.

SeqDesignInference 11

Usage:
SegDesignInference$new(
seqg_des_obj,
estimate_type,
test_type = "randomization-exact”,
num_cores = 1,
verbose = TRUE
)

Arguments:

seq_des_obj A SeqDesign object whose entire n subjects are assigned and response y is
recorded within.

estimate_type The type of estimate to compute of which there are many and identified by
the response type as its first word. If the string "KK" appears after the first word, then
this estimate type is only applicable to KK14, KK21, KK21stepwise designs. * "continu-
ous_simple_mean_difference" assumes the treatment effect parameter is an additive treat-
ment effect and estimates via the simple average difference * "continuous_regression_with_covariates"
assumes the treatment effect parameter is an additive treatment effect and the presence of
linear additive covariates and estimates via OLS * "continuous_KK_compound_mean_difference"
assumes the treatment effect parameter is an additive treatment effect and estimates via com-
bining a simple average difference estimator for both the matches and the reservoir * "con-
tinuous_KK_compound_multivariate_regression" assumes the treatment effect parameter is
an additive treatment effect and estimates via combining an OLS estimator for bothe ther
matches and the reservoir * "continuous_KK_regression_with_covariates_with_matching_dummies"
assumes the treatment effect parameter is an additive treatment effect and the presence of
linear additive covariates treating the match ID as a factor and estimates via OLS (not rec-
ommended) * "continuous_KK_regression_with_covariates_with_random_intercepts" as-
sumes the treatment effect parameter is an additive treatment effect and the presence of
linear additive covariates and random intercepts on the match ID and estimates via re-
stricted maximum likelihood * "incidence_simple_mean_difference" assumes the treatment
effect parameter is an additive probability difference and estimates via the simple average
difference * "incidence_simple_log_odds" assumes the treatment effect parameter is ad-
ditive in the log odds probability of the positive class and estimates via maximum like-
lihood * "incidence_logistic_regression" assumes the treatment effect parameter is addi-
tive in the log odds probability of the positive class and the presence of linear additive
covariates also in the log odds probability of the positive class and estimates via max-
imum likelihood * "incidence_KK_compound_multivariate_logistic_regression" assumes
the treatment effect parameter is additive in the log odds probability of the positive class
and the presence of linear additive covariates treating the match ID as a factor also in the
log odds probability of the positive class and estimates via maximum likelihood * "inci-
dence_KK_multivariate_logistic_regression_with_matching_dummies" assumes the treat-
ment effect parameter is additive in the log odds probability of the positive class and the
presence of linear additive covariates treating the match ID as a factor also in the log odds
probability of the positive class and estimates via maximum likelihood * "incidence_ KK_compound_multivariate_log
assumes the treatment effect parameter is additive in the log odds probability of the pos-
itive class and the presence of linear additive covariates and random intercepts on the
match ID also in units of log odds probability of the positive class and estimates via re-
stricted maximum likelihood * "proportion_simple_mean_difference" assumes the treat-
ment effect parameter is an additive proportion difference and estimates via the simple

SeqDesignInference

average difference * "proportion_simple_logodds_regression" assumes the treatment ef-

fect parameter is additive in the log odds proportion and estimates via beta regression *
"proportion_beta_regression" assumes the treatment effect parameter is additive in the log

odds proportion and the presence of linear additive covariates and estimates via beta re-

gression * "proportion_KK_compound_univariate_beta_regression" assumes the treatment

effect parameter is an additive treatment effect in log odds of proportion and the presence

of linear additive covariates also in the log odds of proportion and estimates via combining

a simple average difference estimator for both the matches and the reservoir * "propor-
tion_KK_compound_multivariate_beta_regression" assumes the treatment effect parameter

is an additive treatment effect in log odds and estimates via combining a simple average dif-

ference estimator for both the matches and the reservoir * "proportion_KK_multivariate_beta_regression_with_matck
assumes the treatment effect parameter is additive in the log odds proportion and the pres-

ence of linear additive covariates and estimates via beta regression * "count_simple_mean_difference"

assumes the treatment effect parameter is an additive mean count difference and estimates

via the simple average difference * "count_univariate_negative_binomial_regression" as-

sumes the treatment effect parameter is additive in the log count and estimates via nega-

tive binomial regression * "count_multivariate_negative_binomial_regression" assumes the

treatment effect parameter is additive in the log count and the presence of linear additive co-

variates and estimates via negative binomial regression * "count_KK_compound_univariate_negative_binomial_regre
assumes the treatment effect parameter is additive in the log count and treating the match ID

as a factor and estimates via maximum likelihood * "count_KK_multivariate_negative_binomial_regression_with_m:
assumes the treatment effect parameter is additive in the log count and the presence of linear

additive covariates and treating the match ID as a factor and estimates via maximum likeli-

hood * "count_KK_multivariate_negative_binomial_regression_with_random_intercepts_for_matches"

assumes the treatment effect parameter is additive in the log count and the presence of linear

additive covariates in units of log count and random intercepts on the match ID in the log

count and estimates via maximum likelihood * "survival_simple_median_difference" as-

sumes the treatment effect parameter is the difference in survival medians and estimates via

Kaplan-Meier * "survival_simple_restricted_mean_difference"” assumes the treatment ef-

fect parameter is the difference in survival means and estimates via restricted means (assum-

ing the largest survival time is the absolute limit) * "survival_univariate_weibull_regression"

assumes the treatment effect parameter is the additive mean survival difference and es-

timates via Weibull regression * "survival_multivariate_weibull_regression" assumes the

treatment effect parameter is the additive mean survival difference and the presence of linear

additive covariates and estimates via Weibull regression * "survival_KK_multivariate_weibull_regression_with_matc
assumes the treatment effect parameter is the additive mean survival difference and the pres-

ence of linear additive covariates and treating the match ID as a factor and estimates via

Weibull regression * "survival_univariate_coxph_regression" assumes the treatment effect

is a log difference in hazard which is constant conditional on covariate values and estimates

via maximum likelihood * "survival_multivariate_coxph_regression" assumes the treatment

effect is a log difference in hazard which is constant conditional on covariate values and

the presence of linear additive covariates in log hazard and estimates via maximum likeli-

hood * "survival_KK_multivariate_coxph_regression_with_matching_dummies" assumes

the treatment effect is a log difference in hazard which is constant conditional on covariate

values and the presence of linear additive covariates in log hazard and treating the match ID

as a factor and estimates via maximum likelihood * "survival_KK_multivariate_coxph_regression_with_random_inte
assumes the treatment effect is a log difference in hazard which is constant conditional on

covariate values and the presence of linear additive covariates in log hazard and random

SeqDesignInference 13

intercepts on the match ID in units of log hazard and estimates via maximum likelihood

test_type The type of test to run (either "MLE-or-KM-based" implying your subject entrant
sampling assumption is from a superpopulation or "randomization-exact" implying a finite
sampling assumption). The default option is "randomization-exact" as it provided properly-
sized tests in our simulations.

num_cores The number of CPU cores to use to parallelize the sampling during randomization-
based inference (which is very slow). The default is 1 for serial computation. This parameter
is ignored for test_type = "MLE-or-KM-based".

verbose A flag indicating whether messages should be displayed to the user. Default is TRUE
Returns: A new ‘SeqDesignTest object.

Examples:

seqg_des = SeqDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)

Method compute_treatment_estimate(): Computes for estimate type "mean_difference-or-
medians" either (1a) for incidence outcomes, the additive log odds treatment effect using logistic
regression (1b) for survival outcomes, the median difference for suvival using the Kaplan-Meier
estimates for both arms (1c) for count outcomes, the additive treatment effect on log count us-
ing negative binomial regression (1d) for proportion and continous outcomes (where the latter is
not under an equal allocation KK design), the classic mean_difference estimate of the additive
treatment effect, (1e) for continuous outcome, equal allocation to arms and KK designs, there’s a
special match-reservoir weighted classic mean_difference estimate

Computes for estimte type "default_regression” either (2a) for incidence outcomes, the additive
log odds treatment effect using logistic regression controlled for all other covariates (2b) for sur-
vival outcomes, the additive treatment effect on log suvival using Weibull regression controlled
for all other covariates (2c) for count outcomes, the additive treatment effect on log count using
negative binomial regression controlled for all other covariates (2d) for proportion outcome, the
additive treatment effect on proportion using beta regression controlled for all other covariates
(2e) for continous outcomes but not under an equal allocation KK design, the additive treatment
effect using OLS regression controlled for all other covariates (2f) for continuous outcome, equal
allocation to arms and KK designs, there’s a special match-reservoir weighted OLS regression
controlled for all other covariates

Usage:
SegDesignInference$compute_treatment_estimate()

Returns: The setting-appropriate (see description) numeric estimate of the treatment effect

Examples:

14

SeqDesignInference

seq_des = SeqDesign$new(n =6, p = 10, design = "CRD", response_type = "continuous”)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 101)

seqg_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seq_des_inf$compute_treatment_estimate()

Method compute_confidence_interval(): Computes a 1-alpha level frequentist confidence
interval differently for all response types, estimate types and test types.

For "mean_difference" it computes (la) for incidence outcomes (ignoring the KK design struc-
ture), the p-value for the test of the additive log odds treatment effect being zero using logis-
tic regression’s MLE normal approximation (1b) for survival outcomes (ignoring the KK de-
sign structure), the median difference for survival using the Kaplan-Meier estimates for both
arms (1c) for count, proportion and continous outcomes (all ignoring the KK design structure),
the classic mean_difference estimate of the additive treatment effect, (1d) for continuous out-
come, equal allocation to arms and KK designs, there’s a special match-reservoir weighted classic
mean_difference estimate

For "medial_difference" it computes only (2) for survival outcomes (ignoring the KK design struc-
ture), the difference of medians of the two arms

Computes for estimte type "default_regression” either (3a) for incidence outcomes, the additive
log odds treatment effect using logistic regression controlled for all other covariates (3b) for sur-
vival outcomes, the additive treatment effect on log suvival using Weibull regression controlled
for all other covariates (3c) for count outcomes, the additive treatment effect on log count using
negative binomial regression controlled for all other covariates (3d) for proportion outcome, the
additive treatment effect on proportion using beta regression controlled for all other covariates
(3e) for continous outcomes but not under an equal allocation KK design, the additive treatment
effect using OLS regression controlled for all other covariates (3f) for continuous outcome, equal
allocation to arms and KK designs, there’s a special match-reservoir weighted OLS regression
controlled for all other covariates

The confidence interval is computed differently for [I] test type "MLE-or-KM-based" Here we
use the theory that MLE’s computed for GLM’s are asymptotically normal (except in the case of
estimat_type "median difference" where a nonparametric bootstrap confidence interval (see the
controlTest: :quantileControlTest method) is employed. Hence these confidence intervals
are asymptotically valid and thus approximate for any sample size.

[1I] test type "randomization-exact” Here we invert the randomization test that tests the strong
null H_ 0: y_T_i-y_C_i=delta <=> (y_T_i - delta) - y_C_i = 0 so we adjust the treatment
responses downward by delta. We then find the set of all delta values that is above 1 - alpha/2
(i.e. two-sided) This is accomplished via a bisection algorithm (algorithm 1 of Glazer and Stark,
2025 available at https://arxiv.org/abs/2405.05238). These confidence intervals are exact to within
tolerance pval_epsilon.

Usage:
SegDesignInference$compute_confidence_interval(

SeqDesignInference 15

alpha = 0.05,
nsim_exact_test = 501,
pval_epsilon = 0.001,
B = NULL

)

Arguments:

alpha The confidence level in the computed confidence interval is 1 - alpha. The default is
0.05.

nsim_exact_test The number of randomization vectors (applicable for test type "randomization-
exact" only). The default is 1000 providing good resolutions to confidence intervals.

pval_epsilon The bisection algorithm tolerance for the test inversion (applicable for test type
"randomization-exact" only). The default is to find a CI accurate to within a tenth of a
percent.

B Number of bootstrap samples for the survival response where estimate_type is "median_difference"
(see the controlTest: :quantileControlTest method). The default is NULL which cor-
responds to B=501 providing pvalue resolution to a fifth of a percent.

Returns: A1 - alpha sized frequentist confidence interval for the treatment effect

Examples:

seq_des = SegDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 101)
seqg_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seqg_des_inf = SegDesignInference$new(seq_des, test_type = "MLE-or-KM-based")
seq_des_inf$compute_confidence_interval()

Method compute_two_sided_pval_for_treatment_effect(): Computes a 2-sided p-value
for all types of inferential settings written about in the initializer (1) estimate type "mean_difference-
or-medians" and test type "MLE-or-KM-based" This implies the classic mean_difference estima-
tor which means that (a) For continous and proportion outcomes, H_0: E[Y_T] - E[Y_C] = delta,
(b) For incidence outcomes, H_0: log(Odds(P(Y_T = 1)) - log(Odds(P(Y_C = 1) = delta, (c)
For count outcomes, H_0: E[In(Y_T)] - E[In(Y_C)] = delta or (d) For survival outcomes, H_0:
MED[Y_T] - MED[Y_C] = delta (2) Fisher’s randomization test which means that H_0: y_i_T -
y_i_C = delta for all subjects either the classic different-in-means estimate of the additive treat-
ment effect, i.e. ybar_T - ybar_C or the default_regression estimate of the additive treatment
effect linearly i.e. the treatment different adjusted linearly for the p covariates.
Usage:
SeqDesignInference$compute_two_sided_pval_for_treatment_effect(
nsim_exact_test = 501,
B = NULL,
delta = @

16 SeqDesignInference

Arguments:

nsim_exact_test The number of randomization vectors to use in the randomization test (ig-
nored if test_type is not "randomization-exact"). The default is 501 providing pvalue
resolution to a fifth of a percent.

B Number of bootstrap samples for the survival response where estimate_type is "median_difference"
(see the controlTest::quantileControlTest method). The default is 501 providing
pvalue resolution to a fifth of a percent.

delta The null difference to test against. For any treatment effect at all this is set to zero (the
default).
Returns: The approximate frequentist p-value

Examples:

seg_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1,
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 10])

2 : 10D

2

2 :
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])

2

2

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsyl[5, :10])
seg_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, : 100)
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seg_des_inf$compute_two_sided_pval_for_treatment_effect()

Method clone(): The objects of this class are cloneable with this method.
Usage:
SegDesignInference$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

B oo
Method ~SegDesignInference$new”
e e e

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)

SeqDesignInference

H m o

Method ~SegDesignInference$compute_treatment_estimate”
e

seq_des = SegDesign$new(n = 6, p = 10, design = "CRD", response_type = "continuous"”)

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SegDesignInference$new(seq_des)

seq_des_inf$compute_treatment_estimate()

oo
Method ~SeqgDesignInference$compute_confidence_interval®
e L P e

seq_des = SegDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 10])

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))
seq_des_inf = SeqDesignInference$new(seq_des, test_type = "MLE-or-KM-based")

seq_des_inf$compute_confidence_interval()

i mm
Method ~SeqgDesignInference$compute_two_sided_pval_for_treatment_effect”
B o

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[1, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[2, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[3, 2 : 101)
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[4, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[5, 2 : 10])
seq_des$add_subject_to_experiment_and_assign(MASS: :biopsy[6, 2 : 101)

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqgDesignInference$new(seq_des)
seq_des_inf$compute_two_sided_pval_for_treatment_effect()

17

18 SeqExpMatch

SegExpMatch Sequential Experimental Designs via Matching On-the-Fly

Description

SeqExpMatch

Details

Generates the following sequential two-arm experimental designs (1) completely randomized (Bernoulli)
(2) balanced completely randomized (3) Efron’s (1971) Biased Coin (4) Atkinson’s (1982) Covariate-
Adjusted Biased Coin (5) Kapelner and Krieger’s (2014) Covariate-Adjusted Matching on the Fly

(6) Kapelner and Krieger’s (2021) CARA Matching on the Fly with Weighted Covariates (7) Kapel-

ner and Krieger’s (2021) CARA Matching on the Fly with Weighted Covariates Stepwise

Author(s)

Adam Kapelner <kapelner@qc.cuny.edu>

References
Adam Kapelner and Abba Krieger A Matching Procedure for Sequential Experiments that Itera-
tively Learns which Covariates Improve Power, Arxiv 2010.05980

See Also
Useful links:

* https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_
repr

https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr
https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr

Index

* design
SeqExpMatch, 18

* htest
SeqExpMatch, 18

add_subject_response, 4
add_subject_to_experiment_and_assign
5

SeqgDesign, 2

SeqDesignInference, 10

SeqExpMatch, 18

SegExpMatch-package (SeqExpMatch), 18

19

	SeqDesign
	SeqDesignInference
	SeqExpMatch
	Index

